Dr Anna Wensley Santure

2001 BSc(Hons), Mathematics and Genetics, University of Otago; 2006 PhD, Genetics, University of Otago

Profile Image
Senior Lecturer


2017-Present Senior Lecturer, School of Biological Sciences, University of Auckland, Auckland, NZ

2013-2017 Lecturer, School of Biological Sciences, University of Auckland, Auckland, NZ

2009-2013 Postdoctoral researcher, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

2006-2008 Postdoctoral researcher, Institute of Zoology, Zoological Society of London, London, UK

Research | Current

1. Genetic basis and evolution of quantitative traits

There has long been an interest in the genetic basis of continuous (or “quantitative”) characters such as height and weight. How many genes influence a trait, and how do these genes interact with each other and with the environment to produce a range of trait measurements? How does the genetic basis, or ‘architecture’, of these traits constrain or encourage their response to selection? I use large-scale genomic tools to dissect the genetic architecture of quantitative traits, particularly in wild populations, with the aim of understanding how the history of these populations (such as population size and selection) has determined the genetic architecture we see today, and might be used to predict how these populations will respond to future selection pressures such as anthropogenic climate change.

In my previous position at the University of Sheffield, UK, I was working with Prof Jon Slate on a 5 year European Research Council funded project investigating the evolutionary genetics of the great tit (Parus major) at Wytham Woods, Oxford. We have developed genomic tools to enable the dissection of the genetic basis of quantitative traits in the population, including life history traits such as clutch size, and morphological traits such as wing length and body size. This ongoing project helps us understand the processes and constraints on microevolutionary change in a classic long-term population study.

With Dr Patricia Brekke and Dr John Ewen I am currently analysing the genetic basis of morphological and life history traits in the hihi (stitchbird, Notiomystis cincta), an endangered New Zealand native bird, with the aim to understand the adaptive potential of the species and how it might respond to future selection pressures including climate change.

2. Genomic imprinting

Genes are imprinted when their expression depends on the sex of the parent passing them on. For example, the copy of a gene we inherit from mum might be expressed, while the copy that we inherit from dad is turned off. In collaboration with Prof Hamish Spencer, we have developed models for genomic imprinting on the X chromosome in mammals, and for how imprinting and maternal genetic effects influence quantitative traits. I am currently working on models and statistical techniques to dissect the influence of genomic imprinting on quantitative traits in wild populations, including the great tit.

3. Other interests

In addition, I have research interests in a broad range of other population and quantitative genetics and genomics, including population genetic and quantitative genetic theory, especially with regard to genomic imprinting and population differentiation, and the use of marker data to reconstruct pedigrees and describe population differentiation.


My research projects utilise genomics tools, including next generation sequencing, single nucleotide polymorphism (SNP) genotyping on high density arrays (“SNP chips”), and bioinformatics, along with statistical approaches such as quantitative trait locus (QTL) mapping and genome wide association scans (GWAS).

I am also interested in the continuing development of genomics resources in New Zealand, and have a special interest in conservation genetics (in particular, management of genetic diversity and the characterisation of phylogenetically unique New Zealand fauna).

Please get in touch if you are interested in developing a research project in any of my areas of interest!

Teaching | Current

I currently teach in BIOSCI 202 (Genetics), BIOSCI 351 (Molecular Genetics) and BIOSCI 701 (Practical Approaches in Genomics). I am course coordinator for and teach in BIOSCI 210 (Evolution and the Origins of Life).

Postgraduate supervision

PhD candidates

2021- Co-supervisor for Jana Wold (whose main supervisor is Assoc Prof Tammy Steeves)

2021- Joint supervisor for Eirian Perkins (jointly supervised with Prof Marti Anderson and with co-supervisors Prof Allen Rodrigo and Dr Nick Matzke)

2021- Joint supervisor for Kamolphat Atsawawaranunt (jointly supervised with Dr Annabel Whibley)

2019- Supervisor for Laura Duntsch (with Dr Patricia Brekke, Dr John Ewen and Assoc Prof Craig Millar)

2019- Co-supervisor for Christina Flammensbeck (whose main supervisor is Assoc Prof Maren Wellenreuther)

2017- Co-supervisor for Caroline Lees (whose main supervisor is Prof Jacqueline Beggs)

Masters candidates

2021- Co-supervisor for Sarah Bailey (whose main supervisor is Dr Annabel Whibley)

PhD completions

2016- 2020 Co-supervisor for Priscila Madi Salloum (whose main supervisor was Dr Shane Lavery and advisor Dr Pierre de Villemereuil)

2016-2020 Supervisor for Alex Knight (with Dr Patricia Brekke, Dr John Ewen and Assoc Prof Craig Millar)

2016-2019 Co-supervisor for Stephanie Galla (whose main supervisor was Assoc Prof Tammy Steeves)

2015-2019 Supervisor for Kate Lee (with Dr Patricia Brekke, Dr John Ewen and Assoc Prof Craig Millar)

2014-2018 Co-supervisor for Agustín López Santos (whose main supervisor was Prof Joel Rothman)

Other completed postgraduate students

2017 Honours supervisor for Phoebe Scherer

2016 Honours supervisor for Edwardo Reynolds (with Dr Matt Littlejohn)

2015 Honours co-supervisor for Sian Glazier (whose main supervisor was Dr Anne Gaskett and co-supervisor Megan Friesen)

Areas of expertise

  • Quantitative genetics
  • Molecular ecology
  • Ecology and evolution
  • Population genetics
  • Genomic imprinting

Committees/Professional groups/Services

School of Biological Sciences Summer Research Studentship coordinator

Chair for Faculty of Science Doctoral Oral Examinations

Member, School of Biological Sciences Research Committee

Elected Sub-Professorial representative, Faculty of Science Staffing Committee

Member, School of Biological Sciences Sustainability Committee

Local organising committee member, 2022 Society for Molecular Biology and Evolution Conference, Auckland

Member, Faculty of Science Sustainability Network

Selected publications and creative works (Research Outputs)

As of 29 October 2020 there will be no automatic updating of 'selected publications and creative works' from Research Outputs. Please continue to keep your Research Outputs profile up to date.
  • Duntsch, L., Tomotani, B. M., de Villemereuil, P., Brekke, P., Lee, K. D., Ewen, J. G., & Santure, A. W. (2020). Polygenic basis for adaptive morphological variation in a threatened Aotearoa | New Zealand bird, the hihi (Notiomystis cincta). Proceedings. Biological sciences, 287 (1933)10.1098/rspb.2020.0948
  • Rutschmann, A., de Villemereuil, P., Brekke, P., Ewen, J. G., Anderson, N., & Santure, A. W. (2020). Consequences of space sharing on individual phenotypes in the New Zealand hihi. EVOLUTIONARY ECOLOGY, 34 (5), 821-839. 10.1007/s10682-020-10063-z
  • Galla, S. J., Moraga, R., Brown, L., Cleland, S., Hoeppner, M. P., Maloney, R. F., ... Steeves, T. E. (2020). A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide. EVOLUTIONARY APPLICATIONS, 13 (5), 991-1008. 10.1111/eva.12916
  • de Villemereuil, P., Rutschmann, A., Lee, K. D., Ewen, J. G., Brekke, P., & Santure, A. W. (2019). Little Adaptive Potential in a Threatened Passerine Bird. Current biology : CB, 29 (5), 889-894.e3. 10.1016/j.cub.2019.01.072
  • de Villemereuil, P., Rutschmann, A., Ewen, J. G., Santure, A. W., & Brekke, P. (2019). Can threatened species adapt in a restored habitat? No expected evolutionary response in lay date for the New Zealand hihi. Evolutionary applications, 12 (3), 482-497. 10.1111/eva.12727
  • Galla, S. J., Forsdick, N. J., Brown, L., Hoeppner, M. P., Knapp, M., Maloney, R. F., ... Steeves, T. E. (2018). Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide Polymorphisms to Inform Conservation Management. Genes, 10 (1).10.3390/genes10010009
  • Santure, A. W., & Garant, D. (2018). Wild GWAS-association mapping in natural populations. Molecular ecology resources, 18 (4), 729-738. 10.1111/1755-0998.12901
  • Kim, J.-M., Santure, A. W., Barton, H. J., Quinn, J. L., Cole, E. F., Great Tit HapMap Consortium, ... van Oers, K. (2018). A high-density SNP chip for genotyping great tit (Parus major) populations and its application to studying the genetic architecture of exploration behaviour. Molecular ecology resources, 18 (4), 877-891. 10.1111/1755-0998.12778


Contact details

Primary office location

Level 1, Room 146
New Zealand

Web links